
International Journal of Heat and Fluid Flow 30 (2009) 1007–1015
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier .com/ locate/ i jhf f
Turbulent channel flow with 2D wedges of random height on one wall

Jorge Bailon-Cuba a, Stefano Leonardi b,*, Luciano Castillo c

a Technical University of Ilmenau, 98693 Ilmenau, Germany
b University of Puerto Rico at Mayaguez, Department of Mechanical Engineering, Mayaguez, PR 00680, Puerto Rico
c Rensselaer Polytechnic Institute, Department of Mechanical Engineering, Aeronautical and Mechanics, Troy, NY 12180, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 May 2008
Received in revised form 12 March 2009
Accepted 31 March 2009
Available online 15 May 2009

Keywords:
Roughness
Random
Turbulence
DNS
0142-727X/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.ijheatfluidflow.2009.03.017

* Corresponding author.
E-mail address: sleonardi@me.uprm.edu (S. Leona
Direct numerical simulations (DNS) of a turbulent channel flow with 2D wedges of random height on the
bottom wall have been performed. In addition, two other simulations have been carried out to assess the
effect of the geometry on the overlying flow. In the first simulation, the four smallest elements were
removed while in the other, a uniform distribution of wedges with the same area was used. Two Reynolds
numbers were studied, Reb ¼ 2500 and Reb ¼ 5000 which correspond in case of smooth walls to
Res ¼ 180 and 300, respectively. Roughness on the wall induces separated regions, the reattachment
occurring on the walls of the wedges or on the bottom wall. The pressure gradients on the walls increase
the ejections and inrushes towards the wall. As a consequence the flow is more isotropic. The mechanism
inducing an improved isotropy has been explained in term of the spectra and budgets of Reynolds stress.
The comparison of the 3 surfaces has shown that near the wall, the uniformly distributed roughness rep-
resents only a poor approximation of the surface with wedges of random height. The Reynolds stresses,
pressure distribution and spectra on the modified wall agree well with those on the random surface.
Energy spectra show the pitch to height ratio of the largest elements to be the more appropriate geomet-
rical parameter to describe the geometry.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Roughness plays a key role in many industrial applications
including flows in pipelines as oil and gas. In addition, roughness
becomes important in high Reynolds number flows. Many studies
have attempted to quantify the effect of roughness on the overly-
ing flow. According to the classical literature (i.e. Nikuradse
(1933), Clauser (1954), Rotta (1962), Perry et al. (1969)), the effect
of the roughness is to shift the mean velocity profile, scaled in wall
units, downward with respect to that on a smooth wall:

Uþ ¼ j�1 ln yþ þ C � DUþ ð1Þ

where C and j are constants and ‘‘+” denotes normalization by wall
variables Us (�

ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
, where sw is the wall shear stress equal to

the sum of the viscous (or skin frictional) drag and the form drag)
and m=Us. The roughness function, DUþ, contains the effect of rough-
ness and depends on the density (defined as the total roughness
frontal area per unit wall area), height (k) and nature of the
roughness.

Most of the research on rough walls relies on 2D or 3D deter-
ministic roughness (square bars, Perry et al. (1969), Leonardi
et al. (2003), Krogstad et al. (2005), Ikeda and Durbin (2007)).
ll rights reserved.

rdi).
However the roughness encountered in nature is random, i.e. the
roughness height and pitch to height values vary randomly. Many
experiments have been performed using sand grain roughness as a
model of random roughness, from the pioneering work of Nikur-
adse (1933), to the recent contribution of McKeon et al. (2004),
Flack et al. (2005), Schultz and Flack (2005) and Brzek et al.
(2007, 2008). Schlichting (1960) was critical in the use of sand
grain roughness since it was difficult to be reproduced and quanti-
fied. Shockling et al. (2006) studied honed pipe and introduced the
high spot count wavelength, kHSC , as an estimate of the typical dis-
tance between the large roughness elements, to characterize ran-
dom roughness. In fact, the distance between the higher
roughness elements must be an important parameter to character-
ize the flow since small roughness elements should not play an
important role when shielded by the larger elements.

A systematic study of random roughness was carried out by
Cheng and Castro (2002). They used x-wire anemometry in a wind
tunnel to measure the flow over a number of urban-blocks all hav-
ing 25% plan and frontal area density. Comparisons were made be-
tween a homogeneous (regular element array) surface and one
consisting of random height elements of the same total volume.
Aligned and staggered patterns of rectangular prisms were consid-
ered as roughness elements. Staggered cube arrays provided great-
er drag than the aligned cube arrays. In addition, it was
demonstrated that random height roughness of the same plan
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Fig. 1. Geometrical sketch of immersed boundary method. � points inside the
roughness element; � points nearest to the boundary of the roughness element. A
partial wavy wall is shown (—-).
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arrangement and total volume as a regular array produced higher
shear stress.

A first attempt to consider numerically roughness elements of
different height was carried out by Ikeda and Durbin (2007). They
performed a DNS of turbulent flow over rectangular ribs trans-
versely mounted on one wall of a a channel, the other being
smooth. The ribs are widely separated with k=k ¼ 9, (k being the
pitch, k the height of the roughness elements). To mimic random
roughness, another case with two rib-heights was considered.
Unevenness was imposed by alternatively increasing and decreas-
ing the original square rib height by 15%. For the uneven case, a
shorter recirculation region for the smaller rib provides a longer
distance to form a fully rough velocity profile. This increases the
mass flux upstream of the taller rib within the roughness sublayer,
and explains why the pressure drag acting on a taller rib is about
42% larger than that on a square rib (even case), with only a
15% increase in rib height.

The present paper further corroborate previous studies by clar-
ifying how 2D roughness elements with random height affects the
overlying flow. This has been investigated by performing a Direct
Numerical Simulation of the flow in a channel with a lower wall
made of 10 wedges of constant base and random height (hereafter
random). Using a random number generator 10 numbers were ob-
tained and scaled so as to have a maximum height of k ¼ 0:2h and
a minimum height of k ¼ 0. Two other simulations have been car-
ried out as reference cases, one removing the four smallest ele-
ments of the random surface (hereafter modified), the other with
a uniform distribution of wedges (hereafter uniform) of equivalent
total area. The database here obtained allows us to assess if a gen-
eric random roughness can be represented more simply by the lar-
ger elements or by the average roughness density. The results have
practical applications when modeling large areas of rough surfaces,
where it is worth reducing the number of parameters necessary to
describe the surface.
2. Numerical procedure

The incompressible non-dimensional Navier–Stokes and conti-
nuity Eqs. may be written as,

@ui

@t
þ @uiuj

@xj
¼ � @P

@xi
þ 1

Re
@2ui

@x2
j

þPdi1; r � u ¼ 0; ð2Þ

where P is the pressure gradient required to maintain a constant
flow rate; ui, the component of the velocity vector in the i�direction
and P the pressure. All the quantities have been normalized by a
combination of the centerline velocity, Uc , and one half of channel’s
height, h. The Navier–Stokes equations have been discretized in an
orthogonal coordinate system using the staggered central second-
order finite difference approximation. Here we recall only the main
features since details of the numerical method can be found in
Orlandi (2000). The discretized system is advanced in time using
a fractional-step method with viscous terms treated implicitly and
convective terms explicitly. The large sparse matrix resulting from
the implicit terms is inverted by an approximate factorization tech-
nique. At each time step, the momentum equations are advanced
with the pressure at the previous step, yielding an intermediate
non-solenoidal velocity field. A scalar quantity U projects the
non-solenoidal field onto a solenoidal one. A hybrid low-storage
third-order Runge–Kutta scheme is used to advance the equations
in time.

The roughness is treated by the immersed boundary technique
described in detail by Fadlun et al. (2000). This approach allows the
solution of flows over complex geometries without the need of
computational intensive body-fitted grids. It consists of imposing
Ui ¼ 0 on the body surface, which does not necessarily coincide
with the grid (� in Fig. 1). The terms in the Navier–Stokes equa-
tions, at the first point outside the body, are discretized taking into
account the real distance between the grid and the body (Orlandi
and Leonardi, 2006). This is to avoid the roughness being described
in a stepwise way. Periodic boundary conditions apply in the
streamwise and spanwise directions, as well as a non-slip condi-
tion at the wall in the normal direction. In addition, the flow rate
has been kept constant in all simulations. the computational box
is 6h� 2h� p in x–y–z, respectively.

The simulation is started from an initial condition imposing a
Poiseuille mean velocity profile plus a random disturbance in the
streamwise direction (x). A uniform coarse grid is used during
the transient period, after which velocities are interpolated on a fi-
ner grid. The process is repeated until the results are grid indepen-
dent. In Fig. 2 the mean and rms of streamwise velocity for random
roughness are shown for three different grids: � 96� 160�
300; � 192� 160� 300, — 192 � 160 � 600. Averages are per-
formed in time and in the spanwise direction. The mean velocity
profiles relative to the 3 grids overlap closely. Larger variation
are observed for the rms of streamwise velocity. Since the differ-
ence between the grid 192� 160� 300 and finest grid,
193� 161� 601, are small, the latter was used for all the simula-
tions. For each case, two Reynolds numbers have been considered:
Re ¼ Uh

m ¼ 4;200 and 7; 000 where U is the maximum velocity and
correspond to Reb ¼ 2500 and Reb ¼ 5000 when the bulk velocity
is used as reference velocity. The equivalent turbulent Reynolds
number is Res ¼ Ush

m ¼ 180 (as in Kim et al., 1987) and 300 when
both walls are smooth.
3. Mean flow

Mean streamlines averaged in time and spanwise direction are
shown in Fig. 3. At the upper vertex of the wedges a separation
occurs. When the pitch to height ratio is small, k=k < 6, reattach-
ment is on the windward side of the following wedge. When the
pitch to height ratio is large, k=k > 6, reattachment occurs on the
bottom wall. For example, the wedge 5 produces a separation,
and the flow reattaches just upstream of wedge 7. The modified
roughness surface (obtained by removing the 4 smallest ele-
ments) presents very similar streamlines. However, having re-
moved wedge 7, the flow remains parallel to the bottom wall
for a larger distance. Reattachment occurs at about b=k5 � 5,
where b is the horizontal distance measured from the separation
point B and k5 is the height of the fifth wedge (Fig. 3b). This
agrees with results in literature. In fact, Le et al. (1997) performed
a DNS of a turbulent flow over a backward facing step with inlet
and outlet boundary conditions. They showed that the instanta-
neous reattachment location, averaged in z, oscillates between
Xr=k ¼ 4:8 and Xr=k ¼ 8 (Xr is measured from the step) with an
averaged value of about 6:3k. Liu et al. (1966) reported a reat-
tachment length of 6k for w=k ¼ 23. For longitudinal square bars,
Leonardi et al. (2003) found a reattachment length of 5:8k. The



Fig. 2. Mean streamwise velocity (a) and streamwise velocity rms (b) for 3 different grids: � 96� 160� 300; � 192� 160� 300, —- 192 � 160 � 600.

Fig. 3. Mean streamlines averaged in time, spanwise direction. From top to bottom:
random roughness, modified random roughness, and uniform roughness. Wedges
on the random roughness are labeled, the 6th having a height k ¼ 0, the 5th
k ¼ 0:2h.

Fig. 4. Pressure fluctuation contours averaged in time and spanwise direction,
increments D ¼ 0:005. Solid lines positive, dashed negative.
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rough surface with a uniform distribution of wedges present a
pitch to height ratio of 6.2. The width of the cavity on the bottom
wall is 5:2k and it is too short to allow a reattachment on the bot-
tom wall.

Pressure contours are shown in Fig. 4. The pressure has a peak
in correspondence of the stagnation point on the windward side
of the wedges. For the random and modified wall the pressure con-
tours reach almost the centerline, whereas for the uniform rough-
ness the disturbance remains limited to the near wall region. In
fact, the higher peaks of pressure occur when the pitch to height
ratio is larger, for example between wedge 1–3 and 5–8 of the ran-
dom and modified surfaces. The difference between the highest
and lowest values of pressure is DP ¼ 0:127, 0.117 and 0.103 for
modified, random and uniform rough surfaces, respectively. This
is due to the distribution of pitch to height ratio in the different
surfaces. In fact, when the pitch to height ratio increases, the
momentum of the flow within the roughness layer increases and
so does DP. The k=k value relative to the uniform distribution is
the average of the k=k relative to the random distribution. There-
fore, in the random surface, some wedges have a larger k=k and
as a consequence a stronger DP. Near the wall, the pressure distri-
bution of a uniform rough wall is a poor approximation of that over
a random surface. The pressure distribution relative to the modi-
fied wall, compares well with that over the original-random wall.

The pressure distribution on the three rough walls is shown in
Fig. 5a. In correspondence to the stagnation points, peaks of pres-
sure are observed. Downstream of the stagnation point, a large
favorable pressure gradient occurs. This produces an increase of
velocity up to the crest of the element, where the flow separates
due to the discontinuity in the geometry. For a large part at the
beginning of the separated region the pressure is constant, and
downstream it increases by approaching the stagnation point of
the following element. The pressure distribution PðxÞ on the frontal
faces raises slightly when the smallest wedges are removed. How-
ever, PðxÞ raises drastically when the removed wedge is a bit higher
(i.e. 10th wedge). The slope of the adverse pressure gradient be-
comes lower and extends through larger distances. For the uni-
formly-spaced wedges, the pressure distribution is periodic with
period k ¼ 1:2h (the wedges spacing).

The projection in the streamwise direction of the pressure on
the wall hPin � xds represents the streamwise force exerted by pres-
sure over the infinitesimal surface elements ds. The sum of these
contributions, PdðxÞ ¼

R x
0 hPin � xds, represents the form drag. In

Fig. 5b, PdðxÞ is shown to understand which elements contribute
more to the total drag. The maximum pressure drag corresponds
to the uniformly-spaced profile. Leonardi et al. (2003) explained
that the maximum drag occurs when k=k � 8. The pitch to height
value for the uniform case is k=k � 6. On the other hand, the ran-
dom roughness has a wide range of k=k. For example, for



Fig. 5. (a) Pressure distribution (averaged in time and spanwise direction) on the rough walls: —–, random; - - - -, modified; ......, uniform. (b) Pressure drag projected in
streamwise direction: —–, random; - - - -, modified; ......, uniform.
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1:5 < x < 3, k=k ¼ 3, and the relative form drag is small. When the
smallest elements are removed, the pitch to distance value in-
creases and so does the form drag.

For the periodic profile, the high pressure gradient occurs peri-
odically along the windward faces (except between the stagnation
point and the peak) and back faces of the wedges. Also, the mini-
mum pressure drag for the original-random geometry is due to
the flow around the smallest wedges for which the acceleration be-
tween the stagnation points and their vertices is relatively small
and the local drag at their back faces is negative (wedges 7, 9,
and 10) or mostly negative (wedge 2).
4. Roughness function

Direct Numerical Simulations allow the friction velocity, Us, to

be estimated reliably as Us ¼
ffiffiffiffiffiffi
sw
p

where sw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pd þ Cf

q
is the

sum of the pressure and frictional drag, respectively (the overbar

means averaging in x, z and time, Cf ¼ k�1 R k
0 hCf ids). An alternative

method, described in detail by Leonardi et al. (2005) determines Us

once the zero crossing of uv and the total pressure drop of the
channel (P) are known. Table 1 shows that the values of Us com-
puted with both methods agree well. The table shows also the
Cf =Pd ratio. The frictional drag is much lower than the pressure
drag, the minimum Cf =Pd occurring for the wall with uniformly
distributed wedges. In fact, being the frictional drag small, the min-
imum Cf =Pd corresponds to the wall with the maximum form drag
(the wall with wedges uniformly spaced). Brzek et al. (2008)
showed similar decomposition for a turbulent boundary layer in
transitional regime and fully rough. The maximum Us corresponds
to the uniform wedges because it has the higher pressure drag.

The effect of roughness on the overlying flow is usually quanti-
fied by the roughness function DUþ (eq.1), the downward shift of
the velocity profile in wall units with respect to the smooth wall.
Table 1
Cf =Pd ratio and values of Us calculated as the sum of the pressure and frictional drag
and using the zero crossing of uv (h1 and h2 are the distances from the wall to yuv ).

Geometry Random Modified Uniform

Cf =Pd (�) 0.477 0.382 0.273
Us ¼

ffiffiffi
s
p

0.0738 0.0801 0.0869

Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ph
1þh1=h2

q
0.0731 0.0785 0.0879

Uncertainty (%) 0.93 2.15 1.16
The velocity profiles in wall units are shown in Fig. 6a. The origin
for y has been determined by matching the slopes in the log-law
region with the value 1=0:41. The shift in the origin in terms of
the maximum roughness height k ¼ 0:2 is about �=k ¼ 0:4. The
velocity profiles relative to random and modified rough walls al-
most overlap both at Reb ¼ 2500 and Reb ¼ 5000. The uniform
rough surface exhibits the largest roughness function at both Rey-
nolds numbers. The modified rough surface represents well the
random rough wall while the wall with wedges uniformly spaced
is only a poor approximation of the random geometry. Therefore,
it is more accurate to model a random roughness by removing
the smallest elements (filtering at a particular height) rather than
using the equivalent average roughness density.

For a k-type surface, in the fully rough regime, DUþ is a function
of the roughness height scaled in wall units (Perry et al., 1969):

DUþ ¼ j�1 ln kþ þ B: ð3Þ

Fig. 6b shows the roughness function as a function of the roughness
height. Since two of the walls present non uniform roughness
height, � ¼ 0:4k has been taken as the reference roughness height.
All the points agree well with Eq. (3) denoting that the flow is in
the fully rough regime.
5. Turbulence intensities and Reynolds stress

The roughness on the wall induces favorable and adverse pres-
sure gradients in correspondence of stagnation and separation
points. As a consequence, the ejections and inrushes towards the
wall increase. The root mean square of streamwise (urms) and of
wall normal velocity (v rms) increase with respect to those over a
flat wall. High levels of urms and v rms are observed at the crest plane,
at about the center of the cavities (Fig. 7). On the wall with wedges
of random height (Fig. 7a), the cavities have several aspect ratios.
When the pitch over height ratio is large, the urms and v rms are lar-
ger than those over a small aspect ratio cavity. Waviness in the
contours of urms and vrms can be observed up to y=h ¼ �0:5, about
5k over the crests plane. The rough wall acts as a perturbation on
the overlying flow, and the penetration of such disturbances varies
with the aspect ratio of the cavities. When the cavity width is small
the disturbance remains confined in the near wall region, whereas
when the cavities are large, it extends outward the wall for about
3–4 roughness heights. The peak of urms for smooth walls occurs at
about y=h ¼ �0:7. For rough walls it takes place at about y=h ¼ �1
(crests plane). This gives an indication that production of the Rey-
nolds stress for smooth and rough wall occurs in different regions.



Fig. 6. Velocity profiles in wall units (averages in time, x; z): �, rough-random; �, rough-modified; M, uniform; —–: 1
0:41 logðyþÞ, empty symbols Reb ¼ 2500, filled Reb ¼ 5000.

Fig. 7. Contours of streamwise velocity rms (left) and normal-wall velocity rms (right). Increments D ¼ 0:01.

Fig. 8. Streamwise and wall-normal turbulent intensities normalised in wall units: —–, KMMs; �, rough-random; �, rough-modified; M, uniform; empty symbols Reb ¼ 2500,
filled Reb ¼ 5000.
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To quantify the overall effect of the roughness surfaces, the rms
have been averaged in x; z; t and normalised with the friction veloc-
ity (Fig. 8). Even if the streamwise velocity rms increases with re-
spect to a flat wall, when the rms is scaled with the friction
velocity, �uþrms near the rough wall becomes smaller than that over
a flat wall (Fig. 8). The opposite occurs for �vþrms. Since the ratio
urms=v rms decreases, over a rough wall the flow is more isotropic
than over a flat surface. This has been observed by several other
experimental and numerical experiments (see Smalley et al.
(2002) for a review). Turbulent intensities ( �wþrms not shown here
for sake of brevity) scaled in wall units overlap reasonably well,
regardless of the geometrical distribution and of the Reynolds
number. Therefore, despite the different spatial distribution, the
random, modified and uniform surface present the same overall
rms (averages in x; z; t).

The Reynolds shear stress, averaged in x; z; t, scaled with the
friction velocity (uvþrms), are shown in Fig. 9. The curves overlap clo-
sely regardless of Reynolds number and the shape of the surface.
With respect to the flat wall, the zero crossing (yuv) of the Reynolds
stresses is shifted upward and the slope of the curve is smaller.
This is due to different values of the wall shear stress being one
wall rough, the other smooth (Leonardi et al., 2005). The maximum
value of the Reynolds stress is at the crest plane, as shown also in
Fig. 8. While over a flat wall the maximum Reynolds stress repre-
sents about 70% of the total stress, here the peak is about 90% of
the total stress. Leonardi et al. (2003) showed that uv is correlated



Fig. 9. Reynolds shear stress for the rough and smooth (rough wall side): ——, rough-random; –––, rough-modified; ---- rough-uniform; � � �� � �, smooth. (uv means averaged
in x; z; t), �, rough-random; �, rough-modified; M, uniform; empty symbols Reb ¼ 2500, filled Reb ¼ 5000.
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with the form drag of the rough surface. Therefore, over a rough
wall, the total stress is almost entirely due to the form drag of
the surface. This is consistent with recent observations by Brzek
et al. (2008) on boundary layers.

Since the present uv profile has a zero crossing (yuv ) shifted up-
ward with respect to the centerline, to compare it more effectively
with the smooth channel, the wall normal direction has been nor-
malised with yuv (Fig. 9b). The agreement with the smooth wall
distribution is remarkable up to y=yuv ¼ 0:2 where the profile rel-
ative to the smooth wall has a peak and moving towards the wall
decreases.

6. Velocity and pressure spectra

To assess how the wall geometry determines the energy distri-
bution among the wavelengths, the energy spectra in the stream-
Fig. 10. Velocity spectra in jx wave number: —–, normal wall; - - - -, streamwise; ......, spa
modified, (d) uniform rough wall.
wise direction have been calculated. Fig. 10 shows the velocity
spectra in the jx wave number near the smooth wall, random,
modified and uniform rough walls. Near the smooth wall, the
spectra of the wall normal velocity is an order of magnitude
smaller than the streamwise and spanwise spectra due to the
roughness of the wall. Near the rough walls, the spectra relative
to the 3 velocity components almost overlap denoting that the
flow is more isotropic. The influence of roughness is character-
ized by energy peaks which mostly occur inside the large eddies
scale (jx 6 L�1). This implies, that at least near the wall, the
roughness affects the large scales. In both the random and mod-
ified rough walls the highest peak of the spectra correspond to a
wavelength close to the distance between the two higher peaks
(5th and 8th). For the modified geometry, the peak of energy is
more concentrated near k ¼ 1:8. This should be due to the small
element between edge 5 and 8 in the random wall which has the
nwise velocities. The straight line has a slope �5=3: (a) smooth wall, (b) random, (c)



Fig. 12. Production term in the u2 budget. Lines smooth wall (Mansour et al., 1988),
�, rough-random; �, rough-modified; M, uniform; empty symbols Reb ¼ 2500, filled
Reb ¼ 5000.
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effect of flattening the distribution of energy near the peak. The
comparison between the random and modified geometries show
a little effect of the smaller elements on the distribution of en-
ergy. Overall, the modified geometry represents well the random
roughness. For the uniformly-spaced wedges, the highest peak of
energy correspond to the distance between two consecutive
wedge’s peaks (k ¼ 1:2). These peak values correspond to the
large eddy range and, for the normal direction, can reach values
up to 42.7% and 60% higher than for the modified and original-
random geometry, respectively. The random and uniform rough
wall, despite the different geometries, present both a peak at sim-
ilar wave numbers.

The spectra of pressure is shown in Fig. 11 near the rough wall,
at the centerline and near the upper smooth wall. Near the wall,
peaks of energy are observed and corresponds to the distance of
the wedges. Moving upward, the energy distribution becomes
smoother and the effect of roughness disappears to a close approx-
imation. The energy of pressure is much higher near the rough wall
than over the smooth wall. In fact, as shown in the previous sec-
tions, roughness increases the pressure drag. In previous studies,
Leonardi et al. (2003) showed that the maximum pressure drag
and roughness function occur for a pitch to height ratio between
4 and 10. They also showed how the form drag scale with k. Since
a random roughness presents ideally all the wavelengths, energy
should be maximum for the highest k in correspondence of a
4 < k=k < 10. Being for the present case k < 0:2, the maximum en-
ergy should be for 0:8 < k < 2. This is in fact the range where the
maximum energy is observed. The case with uniform elements
present similar results to those obtained for the random geometry
because its dominant length scale is in the same range.
7. Reynolds stresses budgets

The transport equations for the Reynolds stresses are (Mansour
et al., 1988)

Duiuj

Dt
¼ � @

@xk
huiujuki þ mr2huiuji þ Pij þPij � �ij ð4Þ

where Tij ¼ � @
@xk
huiujuki is the turbulent transport term,

Dij ¼ m @
@xk@xk

huiuji is the viscous diffusion, Pij ¼ �huiuki
@hUji
@xk
�

hujuki @hUii
@xk

is the production term, Pij ¼ � 1
q hui

@p0

@xj
þ uj

@p0

@xi
i is the veloc-

ity–pressure-gradient tensor and �ij ¼ 2mh@ui
@xk

@uj

@xk
i is the dissipation

tensor.
Reynolds stress budgets of hu2i and hv2i are shown in Figs. 12–

14, where the transport Eqs. have been non-dimensionalized with
u4

s=m. Since the interest is in the overall effects of roughness on the
Fig. 11. Pressure spectra as a function of j3 (eddies size) and the distance, y,
overlying flow, above the roughness sublayer, averages have been
done in x; z and t.

P11 is the dominant production term in the hu2i budget (Fig. 12).
Despite the increase of huvi, the production term, scaled in wall
units decreases with respect to that relative to the smooth wall. In
fact, the velocity gradient is much smaller over a rough wall, and
the drag is almost entirely due to the pressure drag. More impor-
tantly, maximum production of hu2i, for a smooth wall, occurs at
about yþ ¼ 12 while for the rough surfaces it takes place on the
crests plane. The curves relative to the 3 surfaces considered
(random, modified, uniform) overlap to a good approximation.
Near the crest plane, a Reynolds number effect can be observed.
By increasing the Reynolds number, the production, in wall units,
decreases. The form drag and as a consequence huvi and P11 are lit-
tle dependent on the Reynolds number. The value of u4

s=m increases
with the Reynolds number (us being independent of Re). Therefore,
the decrease of the production (when scaled in wall units) with the
Reynolds number is due to an increase of the scale u4

s=m.
The main sink in the hu2i budget, in most of the channel, is the

velocity–pressure gradient term (Fig. 13b). The non-slip condition
at the crests plane applies in a very small portion of the domain,
and then the velocity gradients and �11 are reduced (note that
the smooth wall distribution of �11 has been cut to allow the same
scale on the vertical axis on both figures). In fact, only near the
crest plane the dissipation �11 overcomes P11.

The velocity–pressure correlation redistributes energy from the
streamwise component to the spanwise and normal-wall velocity
components. In fact P22 is the production term in the budget of
to the rough wall (k ¼ 2p=j3): —–, y ¼ �0:96; - - - -, y ¼ 0;....., y ¼ 0:975.



Fig. 13. Dissipation (left) and pressure velocity correlation (right) in the u2 budget. Lines smooth wall (Mansour et al., 1988), �, rough-random; �, rough-modified;
M, uniform; empty symbols Reb ¼ 2500, filled Reb ¼ 5000.

Fig. 14. Dissipation (left) and pressure velocity correlation (right) in the u2 budget. Lines smooth wall (Mansour et al., 1988): �, rough-random; �, rough-modified;
M, uniform; empty symbols Reb ¼ 2500, filled Reb ¼ 5000.
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hv2i (Fig. 14b). Far from the wall, P22 resembles that over a flat sur-
face. Near the wall P22 has a maximum while that relative to the
smooth surface goes to zero. The excess of energy transferred from
huui to hvvi is dissipated near the wall. In fact, for yþ < 15, �22 is
larger than that relative to the smooth wall (the latter being zero
on the wall).

To summarize, over a rough wall, pressure is more effective in
extracting energy from the streamwise component and redistrib-
uting it to the other stresses, thus improving isotropy. Geroge
and Castillo (1997) showed that this is one of the important roles
of the pressure–strain rate terms. The turbulent transport terms
T22 as T11 have opposite sign with respect to that over the smooth
wall. Energy is therefore transported upward where it is dissipated.

In general, the qualitative behavior of the budgets of u2 and v2 is
the same over the three different surfaces (random, modified, and
uniform). The turbulent transport term T22 as T11 has the opposite
sign than that over the smooth wall. Energy is therefore trans-
ported upward where it is dissipated.
8. Conclusions

A DNS for a turbulent channel flow with a 2D random rough-
ness on the lower wall has been performed. The roughness ele-
ments are 2D wedges of random height. The roughness geometry
has been modified removing the small wedges. Also, a rough pro-
file composed of uniformly-spaced wedges with the same longitu-
dinal area as the random case has been considered for comparison.

It was shown that roughness on the wall induces separated re-
gions, the reattachment occurring on the walls of the wedges or on
the bottom walls. The stagnation pressure on the walls of the
wedges determine a form drag which is much larger than the vis-
cous drag.

Moreover, the pressure gradients on the walls increase the ejec-
tions and inrushes towards the wall. As a consequence the flow is
more isotropic. The mechanism inducing to an improved isotropy
has been explained in the paper through the Reynolds stress bud-
gets. The pressure redistributes energy between hu2i and hv2i. As a
consequence hv2i and hw2i increase and isotropy is better approx-
imated on the rough walls.

Near the wall, the energy spectra presents peaks in correspon-
dence of the pitch over height ratio of the wedges. For the random
geometry, the peaks of energy occurs at low wave numbers (i.e.
large scales) corresponding to pitch over height ratios in the range
4 < k=k < 10. Other pitch to height ratio do not affect significantly
the energy distribution. As a consequence a random distribution of
elements can be simplified by considering only those having a
pitch over height in the range 4 < k=k < 10.

Near the wall, the uniformly distributed roughness represents
only a poor approximation of the surface with wedges of random
height. The Reynolds stresses, pressure distribution and spectra
on the modified wall agree well with those on the random
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surface. Far from the wall, all the surfaces have similar results.
Therefore, if one is interested in the behavior far from the wall,
the average density of the edges can be taken as first approxima-
tion. However, if the interest is in the near wall region, or within
the roughness layer, only the ‘‘modified” wall represents a close
approximation of the real rough surface. By removing the small
elements on the wake of the larger the overlying flow is not
much affected. The geometrical characterization of a rough wall
can be simplified to the pitch to height ratio of the largest
elements.
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